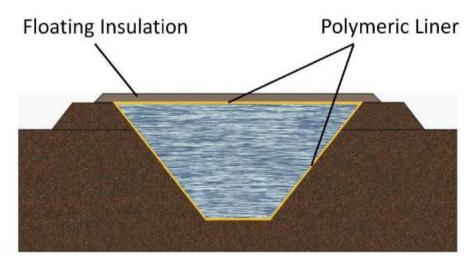


NEUE LINERMATERIALIEN

Alterungsbeständige Polyolefine



Gernot M. Wallner, Lukas Peham, Robert Pugstaller,
David Nitsche,
Jürgen Link, Andreas Höllebauer,
Michael Grabmann, Andreas Brandstätter

INTRODUCTION AND OBJECTIVES

State of the art

- Polymeric materials are of high relevance for pit thermal energy storages (PE-liner, PE-foam insulation)
- Trend of increasing size and temperature loads (max 80°C → 95°C)

Development needs

- Novel liner materials with improved durability at elevated temperatures (+ 10 to 15 °C)
- Methods for efficient screening of novel materials and lifetime assessment
- Intensified collaboration of partners from different levels of value creation chain and involvement of raw material suppliers

METHODOLOGY — AGEING CHARACTERIZATION

Materials, Ageing Conditions and Indicators

Materials and specimen

- PE (commercial):
 Polyethylene high density
- PP-R (commercial):
 Polypropylene-CoPo
- PP-HTR (AGRU): optimized PP-CoPo
- 2mm thick extruded sheets
- micro-sized specimen

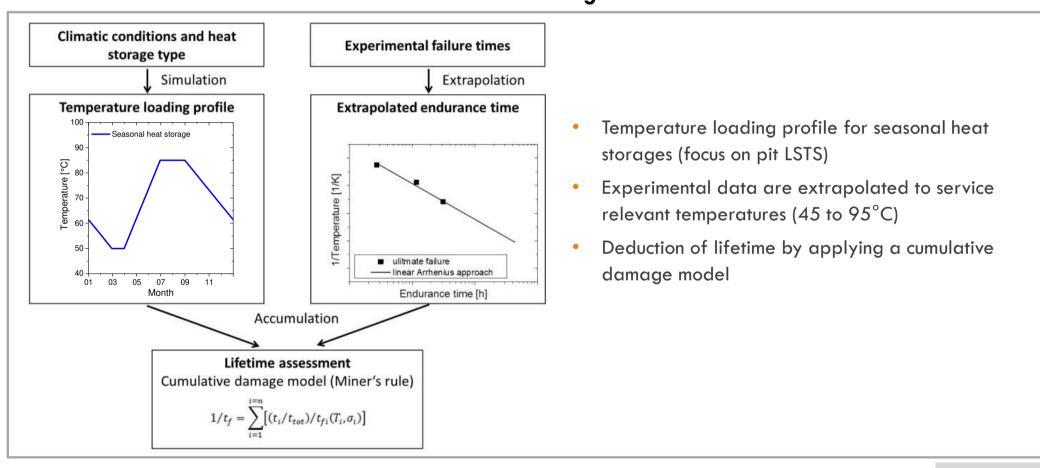
Automated CNC planning

Exposure conditions

- Medium:
 - hot water or hot air
- Temperatures:
 - 95 to 135°C
- Removal:
 - at least 4 specimen per interval

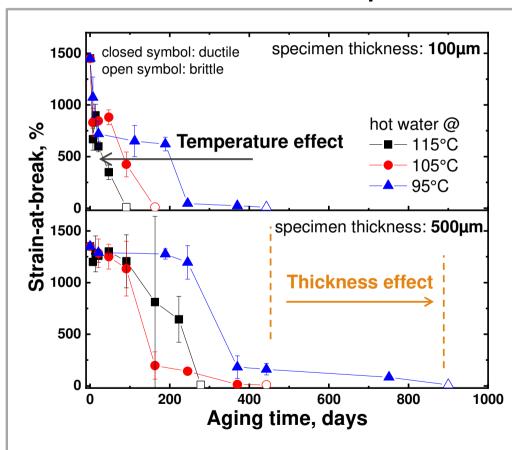
Evaluated aging indicator

- Embrittlement/failure time by tensile testing (Zwick Roell zwickiLine)
 - Specific values: Evaluation of stress/strain curves; strain-at-break
 - Aging indicator: $\varepsilon_{\rm b} < \varepsilon_{\rm y}$; total embrittlement



Zwick Roell zwickiLine

METHODOLOGY — LIFETIME ASSESSMENT


Cumulative damage model

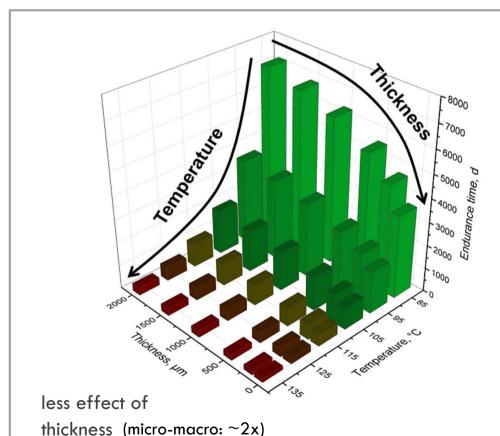
RESULTS — AGEING BEHAVIOUR OF PE

Effect of temperature and thickness on mechanical failure

- Hot water is more critical than hot air
- Decrease of strain-at-break → below yield → failure
- Temperature effect: 3x faster for ↑20°C
- Thickness effect: 5x slower for 20x thicker (0.1 to 2 mm)

Lifetime: 15 years for 2 mm thick PE liner

- Storage type medium min/max. temperature: 50/85°C
- slightly lower lifetimes than Paranowska and Pedersen,
 2016 (DEN)
- different aging setup & failure criterion (both media vs. more critical fluid)



Predicted lifetimes.

RESULTS — AGEING BEHAVIOUR OF PP-R (RANDOM COPO)

Endurance and predicted lifetime

Hot air is more critical (!)

Storage type

Lifetime for PP-R 2mm

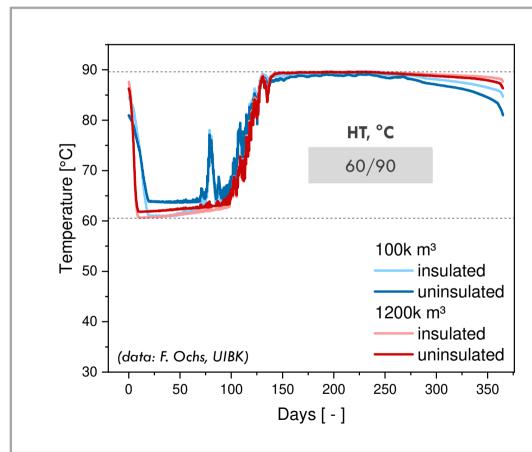
0.0.490.760	r realities in chines,		
min/max. temperature, $^{\circ}$ C	years		
low 40/75	47		
medium 50/85	34		
high 60/95	20		

PP-R > 2x better than PE-HD (!)

RESULTS — OPTIMIZED PP-HTR LINER (AGRU)

Hot air ageing behaviour (endurance time)

95 ° Material	95 °C	105 °C	115 °C	125 °C	135 °C	
Maieriai	Endurc	Endurance times of 100 µm specimen in dry air [d]				
PP-R	1,333	917	604	283	138	
PP-HTR	>1,875	>1,875	1,334	583	338	

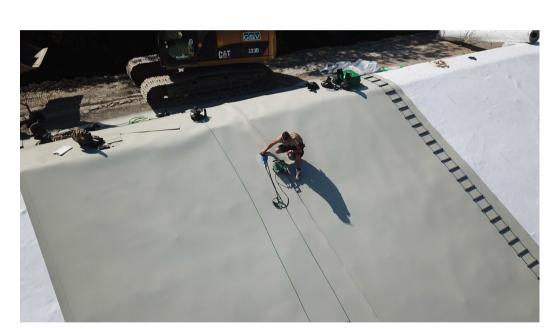

Optimized PP-HTR:

- ~2x better durability than PP-R; ~4x better than PE
- even better behavior in moist air (factor: 1.5x)
- unique behavior in hot water (at $135^{\circ}C > 4x$ better than in dry air)

RESULTS — OPTIMIZED PP-HTR LINER (AGRU)

High temperature load profile and lifetime

Expected lifetime


100k m³		1200k m³				
insulated	uninsulated	insulated	uninsulated			
lifetime [years]						
33	35	31	32			

RESULTS — OPTIMIZED PP-HTR LINER (AGRU)

Upscaling - mock up in Høje Taastrup (DEN)

SUMMARY AND CONCLUSIONS

- Testing method for efficient screening of novel materials based on micro-sized specimen successfully implemented
- Long-term stability of established PE liner grades is limited
 - especially in hot water
- Novel PP-HTR materials (based an well-established hot water pipe grades) allow for significant improvement of durability
 - much better than PE under "high temperature" load conditions
 - hot water is less critical
- Upscaling of novel PP-HTR liner and evaluation on mock-up and full scale level
 - successful installation
 - evaluation of performance in "real" environment

